Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473802

RESUMO

Glucose-insulinotropic polypeptide (GIP) is an incretin hormone that induces insulin secretion and decreases blood glucose levels. In addition, it has been reported to suppress osteoclast formation. Native GIP is rapidly degraded by dipeptidyl peptidase-4 (DPP-4). (D-Ala2)GIP is a newly developed GIP analog that demonstrates enhanced resistance to DPP-4. This study aimed to evaluate the influence of (D-Ala2)GIP on osteoclast formation and bone resorption during lipopolysaccharide (LPS)-induced inflammation in vivo and in vitro. In vivo, mice received supracalvarial injections of LPS with or without (D-Ala2)GIP for 5 days. Osteoclast formation and bone resorption were evaluated, and TNF-α and RANKL expression were measured. In vitro, the influence of (D-Ala2)GIP on RANKL- and TNF-α-induced osteoclastogenesis, LPS-triggered TNF-α expression in macrophages, and RANKL expression in osteoblasts were examined. Compared to the LPS-only group, calvariae co-administered LPS and (D-Ala2)GIP led to less osteoclast formation, lower bone resorption, and decreased TNF-α and RANKL expression. (D-Ala2)GIP inhibited osteoclastogenesis induced by RANKL and TNF-α and downregulated TNF-α expression in macrophages and RANKL expression in osteoblasts in vitro. Furthermore, (D-Ala2)GIP suppressed the MAPK signaling pathway. The results suggest that (D-Ala2)GIP dampened LPS-triggered osteoclast formation and bone resorption in vivo by reducing TNF-α and RANKL expression and directly inhibiting osteoclastogenesis.


Assuntos
Reabsorção Óssea , Osteoclastos , Animais , Camundongos , Osteoclastos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Glucose/metabolismo , Reabsorção Óssea/metabolismo , Peptídeos/metabolismo
2.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069322

RESUMO

Docosahexaenoic acid (DHA) is an omega-3 fatty acid that exerts physiological effects via G protein-coupled receptor 120 (GPR120). In our previous studies, we figured out the inhibitory effects of DHA on TNF-α (Tumor necrosis factor-α)-induced osteoclastogenesis via GPR120 in vivo. Moreover, DHA directly suppressed RANKL expression in osteoblasts via GPR120 in vitro. In this study, we generated bone marrow chimeric mice using GPR120 deficient mice (GPR120-KO) to study the inhibitory effects of DHA on bone resorption and osteoclast formation. Bone marrow cells of wild-type (WT) or GPR120-KO mice were transplanted into irradiated recipient mice, which were WT or GPR120 deficient mice. The resulting chimeric mice contained stromal cells from the recipient and bone marrow cells, including osteoclast precursors, from the donor. These chimeric mice were used to perform a series of histological and microfocus computed tomography (micro-CT) analyses after TNF-α injection for induction of osteoclast formation with or without DHA. Osteoclast number and bone resorption were found to be significantly increased in chimeric mice, which did not express GPR120 in stromal cells, compared to chimeric mice, which expressed GPR120 in stromal cells. DHA was also found to suppress specific signaling pathways. We summarized that DHA suppressed TNF-α-induced stromal-dependent osteoclast formation and bone resorption via GPR120.


Assuntos
Reabsorção Óssea , Osteoclastos , Animais , Camundongos , Osteoclastos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Medula Óssea/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ligante RANK/metabolismo , Diferenciação Celular , Células da Medula Óssea/metabolismo
3.
Front Endocrinol (Lausanne) ; 14: 1207502, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795376

RESUMO

Introduction: Hypertension is a major risk factor for cardiovascular disease (CVD) and is associated with increased bone loss due to excessive activity of the local renin-angiotensin system (RAS). Angiotensinogen/Angiotensin (ANG) II/Angiotensin II type 1 receptor (AT1R) axis is considered as the core axis regulating RAS activity. Azilsartan is an FDA-approved selective AT1R antagonist that is used to treat hypertension. This study aimed to determine whether azilsartan affects formation of osteoclast, resorption of bone, and the expression of cytokines linked with osteoclastogenesis during lipopolysaccharide (LPS)-triggered inflammation in vivo. Methods: In vivo, following a 5-day supracalvarial injection of LPS or tumor necrosis factor-alpha (TNF-α) with or without azilsartan, the proportion of bone resorption and the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells, which are identified as osteoclasts on mice calvariae were counted. The mRNA expression levels of TRAP, cathepsin K, receptor activator of NF-κB ligand (RANKL), and TNF-α were also evaluated. In vitro, the effect of azilsartan (0, 0.01, 0.1, 1, and 10 µM) on RANKL and TNF-α-triggered osteoclastogenesis were investigated. Also, whether azilsartan restrains LPS-triggered TNF-α mRNA and protein expression in macrophages and RANKL expression in osteoblasts were assessed. Furthermore, western blotting for analysis of mitogen-activated protein kinases (MAPKs) signaling was conducted. Results: Azilsartan-treated calvariae exhibited significantly lower bone resorption and osteoclastogenesis than those treated with LPS alone. In vivo, LPS with azilsartan administration resulted in lower levels of receptor activator of RANKL and TNF-α mRNA expression than LPS administration alone. Nevertheless, azilsartan did not show inhibitory effect on RANKL- and TNF-α-triggered osteoclastogenesis in vitro. Compared to macrophages treated with LPS, TNF-α mRNA and protein levels were lower in macrophages treated by LPS with azilsartan. In contrast, RANKL mRNA and protein expression levels in osteoblasts were the same in cells co-treated with azilsartan and LPS and those exposed to LPS only. Furthermore, azilsartan suppressed LPS-triggered MAPKs signaling pathway in macrophages. After 5-day supracalvarial injection, there is no difference between TNF-α injection group and TNF-α with azilsartan injection group. Conclusion: These findings imply that azilsartan prevents LPS-triggered TNF-α production in macrophages, which in turn prevents LPS-Triggered osteoclast formation and bone resorption in vivo.


Assuntos
Reabsorção Óssea , Hipertensão , Animais , Camundongos , Osteogênese , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/metabolismo , Reabsorção Óssea/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , RNA Mensageiro/metabolismo , Hipertensão/metabolismo
4.
J Alzheimers Dis ; 95(4): 1535-1543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37718804

RESUMO

BACKGROUND: Oral formulations are not suitable for demented patients with dysphagia, those refuse to take tablets, or those with drug compliance problem. However, only oral formulations of donepezil hydrochloride are approved for the treatment of severe Alzheimer's disease in Japan. OBJECTIVE: To evaluate the safety, tolerability, and efficacy of long-term application of a 55.0 mg transdermal donepezil patch switched from a 10 mg oral donepezil hydrochloride tablet, for the treatment of patients with severe Alzheimer's disease. METHODS: A 52-week, multicenter, open-label, uncontrolled (phase III) study (jRCT2080224612) was conducted in Japan between April 2019 and August 2021. A 10 mg donepezil hydrochloride tablet was administered once a day for four weeks; a 55.0 mg donepezil patch was then applied once a day for 52 weeks in patients with severe Alzheimer's disease. RESULTS: Of 64 patients received the patch, 45 completed the 52-week period. The overall discontinuation rate was 29.7% (19/64). Among the 19 patients discontinued, six patients 9.4% (6/64) discontinued due to adverse events. The incidence of adverse events at application sites was 67.2% (43/64), including application site erythema 29.7% (19/64), application site pruritus 25.0% (16/64), and contact dermatitis 20.3% (13/64). Adverse events were mild and did not increase with time, demonstrating a favorable safety profile. Cognitive function, measured using the Mini-Mental State Examination, was maintained for up to 24 weeks. CONCLUSIONS: Adverse events were considered manageable in a clinical setting. The long-term application of a 55.0 mg donepezil patch once a day was feasible treatment in patients with severe Alzheimer's disease.


Assuntos
Doença de Alzheimer , Humanos , Donepezila/uso terapêutico , Doença de Alzheimer/psicologia , Inibidores da Colinesterase/efeitos adversos , Piperidinas/efeitos adversos , Indanos/efeitos adversos , Resultado do Tratamento , Comprimidos/uso terapêutico
5.
Nutrients ; 14(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35406043

RESUMO

The Gly16Arg polymorphism results in a G to C nucleotide mutation in the human beta 2-adrenergic receptor (ADRB2) gene and has a relationship with obesity; however, this substitution's effects on food preferences are unclear. Therefore, we determined this relationship among healthy young adults (mean age, 23.4; n = 52). To evaluate food preferences, four categories of food (sweet, salty, sour, and bitter) along with high-fat foods were evaluated using a self-reporting questionnaire. Male (n = 26) and female subjects (n = 26) were genotyped for the polymorphism and further divided into three groups (two homozygous groups, GG, CC; and a heterozygous group, GC). Preference for sour foods in the GG group was higher compared with that in the CC group in females (p < 0.05). When sweet foods were classified into low- and high-fat subgroups, preference for high-fat sweet foods in the GG group was higher than that for low-fat sweet foods in all subjects (p < 0.05). The degree of preference for high-fat foods in the GG group was higher than other groups for males (p < 0.05). These results suggest that ADRB2 polymorphism is associated with food preference. Understanding the relationship of ADRB2 substitution to food preference will be valuable for designing individualized anti-obesity strategies.


Assuntos
Preferências Alimentares , Receptores Adrenérgicos beta 2 , Paladar , Adulto , Feminino , Humanos , Japão , Masculino , Obesidade , Receptores Adrenérgicos beta 2/genética , Paladar/genética , Percepção Gustatória/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...